

# The Office of the Municipal Executive Ghyanglekh Rural Municipality

Bagmati Province, Sindhuli, Nepal

### Structural Analysis and Design Report Hospital Main Blocks A&B Ghyanglekh Rural Municipality, Sindhuli, Nepal

**Empirical Engineering Consultancy (P) Limited** Sukedhara, Kathmandu Metropolitan City 44600, Bagmati, Nepal Email: <u>empirical.cons@gmail.com</u>,T: 01-5908021

#### Ghiyanglekh Sindhuli 10 beded Hospital Block A+B

#### (STRUCTURAL ANALYSIS AND DESIGN REPORT)

<u>SUBMITTED BY:</u> <u>Dr Govind Prasad Lamichhane</u> <u>Associate Prof. PU</u> <u>NEC 5312 A</u>

Gauelline

**Empirical Engineering Consultancy Pvt. Ltd**.

Sukedhara, Kathamndu, Nepal, Email:empirical.cons@gmail.com, PH:015908021

#### Table of Contents

| 1.        | INTI                            | RODUCTION                                                 | 1   |
|-----------|---------------------------------|-----------------------------------------------------------|-----|
| 2.        | SEISMIC VULNERABILITY OF NEPAL1 |                                                           |     |
| 3.        | PHILISOPHY OF SEISMIC DESIGN1   |                                                           |     |
| 4.        | BUILDING DESCRIPTION            |                                                           |     |
| 5.        | STRUCTURAL SYSTEM               |                                                           |     |
| 6.        | LOA                             | ADS ADOPTED                                               | 5   |
| 7.        | SEIS                            | SMIC DESIGN PARAMETERS                                    | 7   |
| 8.        | PRE                             | ELIMINARY DESIGN                                          | 8   |
| 9.<br>V19 |                                 | ITE ELEMENT MODELING AND ANALYSIS OF BUILDING USING SAP20 | 00  |
| 9.        | 1 1                             | LOADS APPLIED ON BUILDING:                                | .11 |
|           | 9.1.1                           | 1 Floor Finish                                            | .11 |
|           | 9.1.2                           | 2 Live Load                                               | .13 |
|           | 9.1.3                           | 3 Wall load                                               | .15 |
| 9.2       | 2 1                             | LATERAL LOAD ESTIMATION ACCORDING TO IS 1893:2016         | .16 |
|           | 9.2.1                           | A block                                                   | .16 |
|           | 9.2.2                           | 2 B block                                                 | .19 |
| 9.        | 3 1                             | LOAD CASES AND COMBINATION                                | .21 |
|           | 9.3.1                           | 1 Load Cases                                              | .21 |
|           | 9.3.2                           | 2 Load Combinations                                       | .21 |
| 9.4       | 4 1                             | Base Reaction                                             | .22 |
| 9.:       | 5 1                             | MODAL RESULT                                              | .22 |
| 9.        | 5 I                             | DRIFT OF THE BUILDING                                     | .24 |
| 9.'       | 7 (                             | CHECK FOR TORSION                                         | .25 |
| 10.       | DE                              | ESIGN OF STRUCTURL MEMBERS                                | .26 |
| 10        | .1                              | Design of slab                                            | .26 |
| 10        | .2                              | Design of Beam                                            | .26 |
| 10        | .3                              | Design of Column                                          | .30 |
| 10        | .4                              | Design of foundation                                      | .33 |
| 10        | .5                              | Design of staircase                                       | .33 |
| 11.       | CC                              | ONCLUDING REMARKS                                         | .34 |
| 12.       | RE                              | EFERENCE CODE                                             | .35 |
| Anne      | ex 1:                           | Column Detailing                                          | .37 |
| Anne      | Annex 3 Beam Detailing          |                                                           |     |
| Anne      | ex 4:                           | Design of Foundation                                      | .40 |
| Anne      | ex 5:                           | Design of Slab                                            | .41 |

| Annex 6: Design of Staircase                  | 41 |
|-----------------------------------------------|----|
| Annex 7: Design of Shear wall with strap beam | 41 |

#### 1. INTRODUCTION

The basic aim of the structural design is to build a structure, which is safe, fulfilling the intended purpose during its estimated life span, economical in terms of initial and maintenance cost, durable and also maintaining a good aesthetic appearance.

A building is considered to be structurally sound, if the individual elements and the building as a whole satisfy the criteria for strength, stability and serviceability and in seismic areas additional criteria for ductility and energy absorption capabilities. The overall building must be strong enough to transfer all loads through the structure to the ground without collapsing or losing structural integrity by rupture of the material at the critical sections, by transformation of the whole or parts into mechanisms or by instability.

#### 2. SEISMIC VULNERABILITY OF NEPAL

Nepal is located in the boundary of two colliding tectonic plates, namely, the Indian Plate (Indo-Australian Plate) and the Tibetan Plate (Eurasian Plate). The Indian Plate is constantly moving under the Tibetan Plate causing many minor and major earthquakes in this region. As a result, Nepal has witnessed many major as well as minor earthquakes during the past. Records of earthquakes are available in Nepal since 1255 A.D. Those records show that around 18 major earthquakes have shaken Nepal since then. The 1833 A.D. earthquake and 1934 A.D Bihar-Nepal earthquakes and 2015 Gorkha earth quake were the most destructive ones in the history of Nepal.

Thus structures to be built in Nepal need to be suitably designed and detailed, so as to counteract the forces due to earthquakes.

#### 3. PHILISOPHY OF SEISMIC DESIGN

The probability of occurrence of severe earthquakes is much less than that of minor earthquakes at a given site. Many of the structures may never experience severe earthquakes during its lifetime. Construction of any ordinary structures to resist such severe earthquakes without undergoing any damage may not be considered economically feasible, as it may be far cheaper to repair or even rebuild the structure after having severe and strong shaking. On the other hand, structures located in seismic areas experience minor earthquakes rather frequently. Thus, in the event of severe and strong shaking, the structure is allowed to have some damage which may be repairable or even irreparable, but the structure will not be allowed to collapse completely, thereby ensuring the safety of life and the property in the structure. In order that one does not have to undertake frequent repair and retrofitting of the structure, the structure should not have any damage during minor level of shaking. In case of moderate shaking the structure is allowed to have some non-structural damage without endangering

life and property within the structure. During such event the level of damage should be such that it can be economically repaired.

The structures are generally designed for much lower seismic forces than what it may actually experience during its life time. Since the structure is expected to undergo damage in the event of a severe shaking, reliance is placed on the inelastic response of the structure beyond yield. Therefore, structures have to be ductile and capable of dissipating energy through inelastic actions. Ductility can be achieved by avoiding brittle modes of failures. Brittle modes of failures include, shear and bond failure. Thus, structures should be designed on Weak beam-Strong column philosophy.

#### 4. BUILDING DESCRIPTION

**Building Typology:** 

#### Form:

Type:

#### Hospital building

Reinforcement Concrete Frame Building

| Plan Shape:               | Irregular shaped                |
|---------------------------|---------------------------------|
| Plan Configuration:       | Irregular                       |
| Vertical Configuration:   | Irregular                       |
| Plinth Area:              | 658 m <sup>2</sup>              |
| Number of Stories         | Two Storey                      |
| Position of the Building: | Free Standing                   |
| Total Height:             | <b>11.7 m</b> from plinth level |
| Inter Storey Height:      | <b>3.6</b> m.                   |
| Maximum length of Beam:   | 4.805 m                         |
| Size of Columns:          | 350 x 350 mm <sup>2</sup>       |
| Wall Thickness:           | 230mm                           |
| Floor/Roof structure:     | 150 mm slab floor               |
|                           |                                 |



Figure 1: Ground Floor Plan (Refer Drawing for Detail)

#### 5. STRUCTURAL SYSTEM

#### Material:

Frame System:

Floor System:

#### **Foundation System:**

#### **Material Strengths:**

| Member     | <b>Concrete Grade</b> |
|------------|-----------------------|
| Columns    | <mark>M30</mark>      |
| Beams      | M20                   |
| Slabs      | M20                   |
| Foundation | M20                   |

Steel

| Steel Type                  | Grade  |
|-----------------------------|--------|
| Thermo mechanically Treated | Fe 500 |
| Bar(TMT)                    | Fe 300 |

#### 6. LOADS ADOPTED

Load calculation is done using the NBC 102:1994 as reference. At first type of material is selected and value of unit weight of the materials is taken from the above mentioned code. Thickness of the material is selected as per the design requirement. Knowing area, thickness and unit weight of materials, loads on each section is found.

The following are assumed for detail load calculation.

| ٠ | R.C.C Slab, Beam and Column | $= 25.0 \text{ KN/m}^3$  |
|---|-----------------------------|--------------------------|
| • | Screed (25mm thick)         | $= 19.2 \text{ KN/m}^3$  |
| • | Cement Plaster (20mm thick) | $= 20.40 \text{ KN/m}^3$ |
| • | Marble Dressed              | $= 26.50 \text{ KN/m}^3$ |
| • | Telia Brick                 | $= 19 \text{ KN/m}^{3}$  |

Reinforced Cement Concrete

Special Moment Resisting Frame

Two way Solid Slab

Isolated footing

#### Live Load

Live load for the floor and Roof is taken from IS 875 part 2 as referred by National building code. For Institutional Building, Following load has be taken (Table 1, IS 875 Part 2)

Bedrooms, Wards, Dressing rooms, lounges - 2 KN/m2

Toilet and bath rooms - 2 KN/m2

Corridors, passages, staircases including fire escapes - 4 KN/m2

Balconies - 4 KN/m2

X-Ray rooms, operating rooms, and general stores - 3 KN/m2

Office rooms and OPDs - 2.5 KN/m2

Kitchen, Laundries and laboratories - 3 KN/m2

For Roof Load, Table 2 of IS 875 part 2 has been taken for the estimation

Flat, sloping or curved roof with slopes up to and including 10 degrees

Access not provided except for maintenance  $-0.75 \text{ KN/m}^2$ 

#### **Floor Finish**

Floor Finish Load is calculated Simple Marble Finishes. With load calculation

| Depth of Finishes $= 0.055 \text{ m}$ |  |
|---------------------------------------|--|
|                                       |  |

Marble Dressed =  $26.50 \text{ KN/m}^3$ 

Weight per Square meter =  $0.055 * 26.5 = 1.458 \text{ KN/m}^2$  (Assume 1.5 KN/m<sup>2</sup>)

#### Wall Loads

Wall loads are applied on underneath beam if wall is rested on the beam. For partition wall load is applied as the area load intensity. Load intensity is calculated by dividing total weight of partition wall by the area of given slab portion.

#### 7. SEISMIC DESIGN PARAMETERS

The seismic design parameters have been considered in reference with IS1893:2016 and are presented as follows:

Seismic Zone Factor

| Seismic Zone | Z    |
|--------------|------|
| Sindhuli     | 0.36 |
| (Zone V)     |      |

Important Factor

| Building Occupancy Type | Ι   |
|-------------------------|-----|
| Hospital Building       | 1.5 |

Structural performance Factor

| Response Reduction | R |
|--------------------|---|
| Factor             | 5 |

Site Soil Category

| Soil Type Soft Soil (Type II) |
|-------------------------------|
|-------------------------------|

#### 8. PRELIMINARY DESIGN

For the analysis, dead load is also necessary which depends upon the size of member itself. So it is necessary to pre-assume logical size of member which will neither overestimate the load nor under estimate the stiffness of the building. So, the tentative sizes of the structural elements are determined through the preliminary design so that the pre-assumed dimensions may not deviate considerably after analysis thus making the final design both safe and economical. Tentative sizes of various elements have been determined as follows:

#### <u>Slab:</u>

Preliminary design of slab is done as per the deflection criteria as directed by code Clause 23.2.1 of [IS 456: 2000]. The cover provided is 20 mm and the grade of concrete used in the design is M20. According to which,

 $\frac{\text{Span}}{\text{Eff. Depth}} \leq (M_{\text{ft}} \times M_{\text{fc}}) \times \text{Basic Value}$ 

Where, the critical span is selected which is the maximum shorter span among the all slab element. This is done to make uniformity in slab thickness. The amount of reinforcement will be varied slab to slab but the thickness will be adopted corresponding to the entire slab.

#### Beam:

Preliminary design of the beam is done as per the deflection criteria as directed by code Clause 23.2.1 of [IS 456: 2000] and ductility criteria of ACI code. The cover provided is 30 mm and the grade of concrete used in the design is M20.

According to which,

| Span       | $\leq$ (M <sub>ft</sub> x M <sub>fc</sub> ) x Basic Value x Correction Factor |
|------------|-------------------------------------------------------------------------------|
| Eff. Depth | for span x Correction Factor for Flange                                       |

#### But,

According to Ductility code, Spacing of Stirrups in beam should not exceed d/4 or 8 times diameter of minimum size of bar adopted and should not greater than 100mm. So, for considering construction difficulties in actual field, it is logical to use d/4 as spacing as per the construction practice in Nepal.

#### **COLUMN:**

Preliminary design of column is done from the assessment of approximate factored gravity loads and live loads coming up to the critical section. To compensate the possible eccentric loading and earthquake loads the size is increased by about 25% in design. For the load acting in the column, live load is decreased according to IS 875: 1978. Initially a rectangular column is adopted in this building project so as to provide internal aesthetics required from architecture point of view but the column size and shape will vary as per the requirement for the analysis, design and aesthetic value. The cover provided is 40 mm and the grade of concrete used in the column design is M25.

## 9. FINITE ELEMENT MODELING AND ANALYSIS OF BUILDING USING SAP2000 V19

The FE model of building is developed in SAP2000 V22, a general purpose FE analysis and design software. The size of beams and columns as obtained from preliminary analysis are adjusted according to architectural need. Beam and columns are modeled as frame element. Slabs are also modeled as shell element.

Beam and column are assumed to be line element having six degree of freedom at each node and slab is assumed to be shell element having six degree of freedom at each node. Floor diaphragm is used in the structure to reduce degree of freedom to three for each floor level.

Imposed loads have been modeled as uniform distributed loads. Similarly, wall loads are modeled as uniformly distributed line loads. The columns and walls were "fixed" at their base.

The 3D model is assumed to be fixed at tie beam level. Suitable assumptions are made and FE model as shown in Fig 2 is developed.

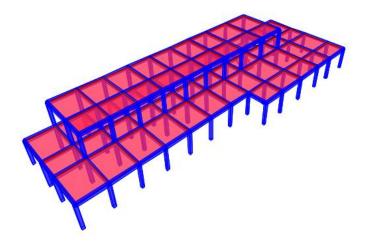



Figure 2: Finite Elemental Modeling in Sap2000 V 22 (A Block)

Loading due to wall, floor finish and live load is as shown in figure below and analysis is done by static method (seismic coefficient method) and Response Spectrum Method. Following forces is observed during Analysis:

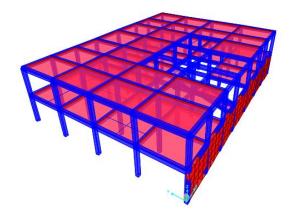
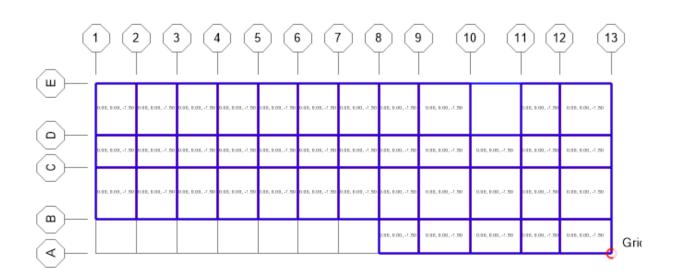




Figure 3: Finite Elemental Modeling in SAP2000 V22 B Block)

#### 9.1 LOADS APPLIED ON BUILDING:

```
9.1.1 Floor Finish
```

This load is applied all over the slab. Load application is shown in figure below.



*Figure 4: Floor Finish load at First Floor (1.5KN/m<sup>2</sup>) (A block)* 

| 0.00, 0.00, -1 50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 0.89, 0.08, -1.50 | 0.00, 0.00, -1.50 | 0.99, 0.09, -1.50 | 0.08, 0.09, -! 50 | 0.88, 0.08, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 |
| 0.39, 0.03, -1 50 | 0.00, 0.00, -1.50 |                   |                   |                   | 0.98, 0.99, -1.50 | 0.00, 0.00, -1.50 |
| 0.00, 0.00, -1 50 | 0.00, 0.00, -1.50 |                   |                   | 0.95, 0.09, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 |

Figure 5: Floor Finish load at First Floor (1.5KN/m2) (B block)

9.1.2 Live Load Application of live load is shown in figure below.

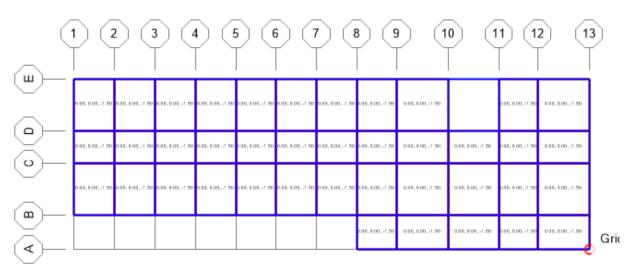



Figure 6: Sample Live Load > 3 KN/m2 (A block)

| 0.00, 0.00, -1.50 | 0.08, 0.03, -1.50 | 0.98, 8.09, -1.50 | 0.00, 0.00, -1 50                                                                                   | 0.08, 0.03, -1.50 | 0.98, 0.09, -1.50 | 0.95, 0.09, -1.50 |
|-------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|
| 0.89, 0.08, -1.50 | 0.08, 0.00, -1.50 | 0.00, 0.00, -1.50 | 0.00, 0.00, 50</td <td>0.00, 0.00, -1.50</td> <td>0.08, 0.00, -1.50</td> <td>0.08, 0.08, -1.50</td> | 0.00, 0.00, -1.50 | 0.08, 0.00, -1.50 | 0.08, 0.08, -1.50 |
| 0.89, 0.08, -1.50 | 0.00, 0.00, -1.50 |                   |                                                                                                     |                   | 0.00, 0.00, -1.50 | 0.00, 0.00, -1.50 |
| 0.89, 0.08, -1.50 | 0.00, 0.00, -1.50 |                   |                                                                                                     | 0.00, 0.00, -1.50 | 0.98, 0.09, -1.50 | 0.90, 0.09, -1.50 |

Figure 7: Sample Live Load < 3 KN/m2 (B block)

Please Refer Model Provided along with the Report for Detail

#### 9.1.3 Wall load

Load coming from the weight of wall is applied on the beam underneath the wall. If there is not any beam below the wall, load is applied to nearby beam in the direction of wall. Application of wall load is shown in figure below. Detail Calculation of the wall load is presented in Annex.

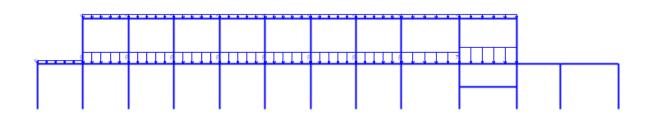



Figure 8: Sample Wall Load (A block)

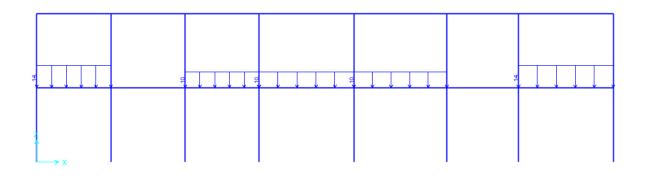



Figure 9: Sample Wall Load (B block)

Please Refer Model Provided along with the Report for Detail

#### 9.2 LATERAL LOAD ESTIMATION ACCORDING TO IS 1893:2016

Lateral loads on the building frames are caused primarily by wind pressure. In addition; earthquake shocks produce horizontal sway, which results in inertia forces acting horizontally on the structure. But in an area like Malunga,Syangja wind load is not so vital so, only the lateral load due to earthquake shock is considered in this case.

#### 9.2.1 A block

For the analysis and design of earthquake action following method has been applied in this building.

#### **Response spectrum method**

Following assumptions have been made to estimate the total base shear in the buildings:

Zone factor for Ghiyanglekh Sindhuli according to IS code,

Z=0.36

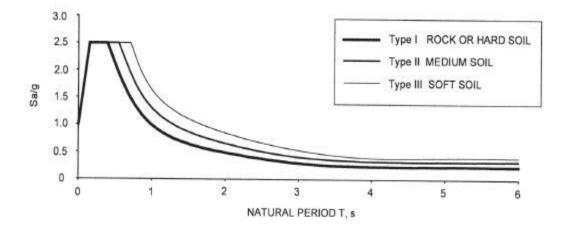
Response Reduction Factor = 5 for moment resisting frame.

Importance factor = 1.5

For building with RC frame structures, the empirical relation for time period is given by the relation,

$$T = \frac{0.09 * h}{\sqrt{d}}$$

|           |              | Dimension | time Period                   |
|-----------|--------------|-----------|-------------------------------|
| Direction | Height H (m) | D         | T=0.09 H / (D) <sup>0.5</sup> |
|           |              |           | (sec)                         |
| Y         | 7.2          | 13        | 0.179                         |
| X         | 7.2          | 46.55     | 0.094                         |


With this fundamental time period in medium soil type-II, a graphical interpolation has been made to calculate  $S_{0/2} = 2.5$ 

|    | А           | В           | С        | D          | E          | F         |
|----|-------------|-------------|----------|------------|------------|-----------|
| 1  | TABLE: Base | Reactions   |          |            |            |           |
| 2  | OutputCase  | CaseType    | StepType | GlobalFX   | GlobalFY   | GlobalFZ  |
| 3  | Text        | Text        | Text     | KN         | KN         | KN        |
| 4  | DEAD        | LinStatic   |          | -7.862E-12 | 1.624E-12  | 6168.991  |
| 5  | LIVE<3      | LinStatic   |          | 0          | 0          | 0         |
| 6  | FF          | LinStatic   |          | -3.34E-12  | -2.316E-12 | 1343.578  |
| 7  | WALL        | LinStatic   |          | -1.459E-12 | 4.427E-12  | 2066.555  |
| 8  | РТ          | LinStatic   |          | -8.566E-13 | -5.795E-14 | 440.099   |
| 9  | LIVE>3      | LinStatic   |          | -6.018E-12 | -3.819E-13 | 3080.695  |
| 10 | EQX         | LinStatic   |          | -1517.88   | 3.774E-11  | 8.811E-13 |
| 11 | EQY         | LinStatic   |          | 9.364E-11  | -1517.88   | 5.805E-12 |
| 12 | rsx         | LinRespSpec | Max      | 1560.561   | 181.47     | 6.513     |
| 13 | rsy         | LinRespSpec | Max      | 182.351    | 1560.684   | 14.599    |
| 14 |             |             |          |            |            |           |
|    |             |             |          |            |            |           |

#### Auto Seismic - IS 1893:2016

#### Linear Dynamic analysis (Response Spectrum Analysis)

Response spectrum analysis is done for the building with irregular configuration and much accurate method. Response spectrum function of IS 1893:2016 is used for the response spectrum.



#### Figure 10 Response Spectrum function used as per IS1893:2016

Base shear due to Response spectrum function must not be less than Base shear calculated liner static method. So following modification factor is used in the response spectrum cases in SAP2000.

| Direction | Symbol | Modification Factor |
|-----------|--------|---------------------|
| X         | Λx     | 12.2                |
| Y         | Λy     | 12.2                |

#### 9.2.2 B block

For the analysis and design of earthquake action following method has been applied in this building.

#### The Response spectrum method

Following assumptions have been made to estimate the total base shear in the buildings:

Zone factor for Ghiyanglekh Sindhuli according to IS code,

Z=0.36

Response Reduction Factor = 5 for moment resisting frame.

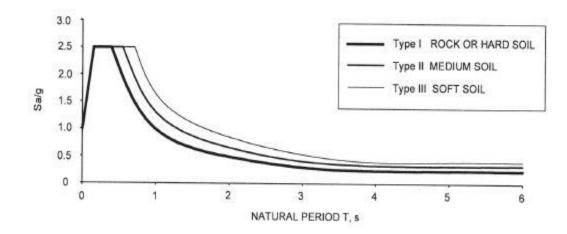
Importance factor = 1.5

For building with RC frame structures, the empirical relation for time period is given by the relation,

$$T = \frac{0.09 * h}{\sqrt{d}}$$

|           |              | Dimension | time Period                   |
|-----------|--------------|-----------|-------------------------------|
| Direction | Height H (m) | D         | T=0.09 H / (D) <sup>0.5</sup> |
|           |              |           | (sec)                         |
| X         | 7.2          | 28.326    | 0.140                         |
| Y         | 7.2          | 21.238    | 0.121                         |

With this fundamental time period in medium soil type-III, a graphical interpolation has been made to calculate


Sa/g = 2.5

#### Auto Seismic - IS 1893:2016

|    | А           | В           | С        | D          | E          | F        |  |
|----|-------------|-------------|----------|------------|------------|----------|--|
| 1  | TABLE: Base | Reactions   |          |            |            |          |  |
| 2  | OutputCase  | CaseType    | StepType | GlobalFX   | GlobalFY   | GlobalFZ |  |
| 3  | Text        | Text        | Text     | KN         | KN         | KN       |  |
| 4  | DEAD        | LinStatic   |          | -3.563E-12 | 3.681E-12  | 7437.875 |  |
| 5  | FF          | LinStatic   |          | -1.205E-12 | 4.237E-13  | 1425.878 |  |
| 6  | WALL        | LinStatic   |          | -2.014E-12 | 2.701E-12  | 2271.982 |  |
| 7  | РТ          | LinStatic   |          | -8.121E-13 | -7.974E-13 | 501.318  |  |
| 8  | LIVE>3      | LinStatic   |          | -2.08E-12  | 2.75E-12   | 3274.997 |  |
| 9  | EQX         | LinStatic   |          | -1753.306  | 4.868E-10  | 0        |  |
| 10 | EQY         | LinStatic   |          | 1.306E-10  | -1753.306  | 0        |  |
| 11 | rsx         | LinRespSpec | Max      | 1791.519   | 143.498    | 15.898   |  |
| 12 | rsy         | LinRespSpec | Max      | 100.849    | 1791.705   | 28.043   |  |
| 10 |             |             |          |            |            |          |  |

#### Linear Dynamic analysis (Response Spectrum Analysis)

Response spectrum analysis is done for the building with irregular configuration and much accurate method. Response spectrum function of IS 1893:2016 is used for the response spectrum.



#### Figure 11 Response Spectrum function used as per IS1893:2016

Base shear due to Response spectrum function must not be less than Base shear calculated liner static method. So following modification factor is used in the response spectrum cases in SAP2000.

| Direction | Symbol              | Modification Factor |
|-----------|---------------------|---------------------|
| X         | $\Delta \mathbf{x}$ | 18.67               |
| Y         | Λy                  | 13.3                |

#### 9.3 LOAD CASES AND COMBINATION

```
9.3.1 Load Cases
```

Load cases are the independent loadings for which the structure is explicitly analyzed. Earthquake forces occur in random fashion in all directions. For buildings whose lateral load resisting elements are oriented in two principal directions, it is usually sufficient to analyze in these two principal directions (X – and Y – direction) separately one at a time. Thus, the load cases adopted are as follows:

- i. Dead Load (DL)
- ii. Live Load (LL)
- iii. EQX
- iv. EQY
- v. RSX
- vi. RSY

#### 9.3.2 Load Combinations

Load combinations are the loadings formed by the linear combination of the independent loading conditions. The different load cases have been combined as per IS Code .The load combinations are as follows:

- i. 1.5 DL + 1.5 LL
- ii. 1.2(DL+LL+- EQ)
- iii. 0.9DL+-1.5 EQ

DL= Dead Load

LL= Live load

EQ= Earthquake Load

For the dynamic analysis Earth quake load is replaced by Response spectrum Load RSX and RSY.

#### 9.4 Base Reaction

|     | Base Reactions .Block A               |     |           |          |           |  |  |  |  |  |  |
|-----|---------------------------------------|-----|-----------|----------|-----------|--|--|--|--|--|--|
| EQX | LinStatic -1517.88 3.774E-11 8.811E-1 |     |           |          |           |  |  |  |  |  |  |
| EQY | LinStatic                             |     | 9.364E-11 | -1517.88 | 5.805E-12 |  |  |  |  |  |  |
| rsx | LinRespSpec                           | Max | 1560.561  | 181.47   | 6.513     |  |  |  |  |  |  |
| rsy | LinRespSpec                           | Max | 182.351   | 1560.684 | 14.599    |  |  |  |  |  |  |

|        | Base reaction Block B |     |           |           |          |  |  |  |  |  |
|--------|-----------------------|-----|-----------|-----------|----------|--|--|--|--|--|
| LIVE>3 | LinStatic             |     | -2.08E-12 | 2.75E-12  | 3274.997 |  |  |  |  |  |
| EQX    | LinStatic             |     | -1753.306 | 4.868E-10 | 0        |  |  |  |  |  |
| EQY    | LinStatic             |     | 1.306E-10 | -1753.306 | 0        |  |  |  |  |  |
| rsx    | LinRespSpec           | Max | 1791.519  | 143.498   | 15.898   |  |  |  |  |  |
| rsy    | LinRespSpec           | Max | 100.849   | 1791.705  | 28.043   |  |  |  |  |  |

#### 9.5 MODAL RESULT

Free vibration analysis was performed to determine the natural periods and mode shapes of the buildings. The number of modes, corresponding natural periods and mass participation ration of the building is tabulated in Tables below.

Table 1: Mode numbers, natural periods and mass participation (A block)

| TABLE: Modal Participating Mass Ratios |          |          |          |             |            |             |          |          |             |          |           |             |
|----------------------------------------|----------|----------|----------|-------------|------------|-------------|----------|----------|-------------|----------|-----------|-------------|
| OutputCase                             | StepType | StepNum  | Period   | UX          | UY         | UZ          | SumUX    | SumUY    | SumUZ       | RX       | RY        | RZ          |
| Text                                   | Text     | Unitless | Sec      | Unitless    | Unitless   | Unitless    | Unitless | Unitless | Unitless    | Unitless | Unitless  | Unitless    |
| MODAL                                  | Mode     | 1        | 0.415127 | 0.0063      | 0.793      | 0.000004028 | 0.0063   | 0.793    | 0.000004028 | 0.02523  | 0.00013   | 0.08639     |
| MODAL                                  | Mode     | 2        | 0.379284 | 0.78563     | 0.01953    | 0.0000106   | 0.79193  | 0.81253  | 0.00001463  | 0.00049  | 0.00305   | 0.04209     |
| MODAL                                  | Mode     | 3        | 0.339885 | 0.05704     | 0.04432    | 0.000004627 | 0.84897  | 0.85686  | 0.00001926  | 0.00111  | 0.0000122 | 0.67878     |
| MODAL                                  | Mode     | 4        | 0.20995  | 0.00867     | 0.08273    | 0.00023     | 0.85764  | 0.93958  | 0.00025     | 0.04388  | 0.00013   | 0.11812     |
| MODAL                                  | Mode     | 5        | 0.19825  | 0.04458     | 0.04635    | 0.00025     | 0.90223  | 0.98593  | 0.0005      | 0.05537  | 0.00318   | 0.02596     |
| MODAL                                  | Mode     | 6        | 0.190794 | 0.08739     | 0.00494    | 0.00002138  | 0.98962  | 0.99087  | 0.00052     | 0.01034  | 0.01113   | 0.03996     |
| MODAL                                  | Mode     | 7        | 0.103963 | 0.00042     | 0.00016    | 0.00002032  | 0.99004  | 0.99103  | 0.00054     | 0.00011  | 8.645E-07 | 0.00012     |
| MODAL                                  | Mode     | 8        | 0.080387 | 8.936E-08   | 5.645E-07  | 0.06363     | 0.99004  | 0.99103  | 0.06417     | 0.04075  | 0.03736   | 0.000004563 |
| MODAL                                  | Mode     | 9        | 0.080048 | 0.000003219 | 0.00000683 | 0.00399     | 0.99004  | 0.99104  | 0.06817     | 0.00401  | 0.00271   | 0.000003552 |
| MODAL                                  | Mode     | 10       | 0.07833  | 0.00001676  | 0.00000323 | 0.00864     | 0.99006  | 0.99104  | 0.07681     | 0.00414  | 0.00168   | 0.000002013 |
| MODAL                                  | Mode     | 11       | 0.077387 | 0.00004287  | 0.00001712 | 0.02804     | 0.9901   | 0.99106  | 0.10485     | 0.00356  | 0.08202   | 0.00003313  |
| MODAL                                  | Mode     | 12       | 0.076563 | 0.000001103 | 0.00002042 | 0.00611     | 0.9901   | 0.99108  | 0.11096     | 0.00014  | 0.00128   | 0.000004923 |

| TABLE: Mo             | odal Part | ticipating | Mass Ratios |             |             |             |          |          |             |            |            |            |
|-----------------------|-----------|------------|-------------|-------------|-------------|-------------|----------|----------|-------------|------------|------------|------------|
| OutputCasetepTypetepN |           | itepNun    | Period      | UX          | UY          | UZ          | SumUX    | SumUY    | SumUZ       | RX         | RY         | RZ         |
| Text                  | Text      | Unitless   | Sec         | Unitless    | Unitless    | Unitless    | Unitless | Unitless | Unitless    | Unitless   | Unitless   | Unitless   |
| MODAL                 | Mode      | 1          | 0.491724    | 0.46426     | 0.0017      | 0.000007326 | 0.46426  | 0.0017   | 0.000007326 | 0.00007054 | 0.00357    | 0.44476    |
| MODAL                 | Mode      | 2          | 0.394528    | 0.0009      | 0.71361     | 0.000006215 | 0.46516  | 0.71531  | 0.00001354  | 0.02111    | 0.00001952 | 0.00157    |
| MODAL                 | Mode      | 3          | 0.287711    | 0.19203     | 0.00038     | 0.000001225 | 0.65718  | 0.71569  | 0.00001477  | 0.0000487  | 0.01298    | 0.23153    |
| MODAL                 | Mode      | 4          | 0.195311    | 0.05986     | 0.00183     | 0.000003439 | 0.71704  | 0.71752  | 0.00001821  | 0.00024    | 0.01481    | 0.02805    |
| MODAL                 | Mode      | 5          | 0.165034    | 0.00000794  | 0.23074     | 0.00027     | 0.71705  | 0.94827  | 0.00029     | 0.03862    | 3.737E-07  | 0.00074    |
| MODAL                 | Mode      | 6          | 0.111209    | 0.11834     | 0.0047      | 0.00092     | 0.83539  | 0.95296  | 0.00121     | 0.00137    | 0.00183    | 0.12908    |
| MODAL                 | Mode      | 7          | 0.108077    | 0.00436     | 0.00169     | 0.01515     | 0.83976  | 0.95465  | 0.01636     | 0.01219    | 0.00002148 | 0.00655    |
| MODAL                 | Mode      | 8          | 0.102114    | 0.00047     | 0.0005      | 0.00006005  | 0.84023  | 0.95516  | 0.01642     | 0.00478    | 0.0000291  | 0.00082    |
| MODAL                 | Mode      | 9          | 0.099775    | 0.00063     | 0.000003738 | 0.00009075  | 0.84085  | 0.95516  | 0.01651     | 0.00447    | 0.00139    | 0.00138    |
| MODAL                 | Mode      | 10         | 0.09761     | 3.846E-07   | 0.00028     | 0.0081      | 0.84086  | 0.95544  | 0.02461     | 0.02736    | 0.00002539 | 3.691E-07  |
| MODAL                 | Mode      | 11         | 0.094582    | 0.000002202 | 0.00005766  | 0.00017     | 0.84086  | 0.9555   | 0.02478     | 0.03023    | 0.00151    | 0.00002454 |
| MODAL                 | Mode      | 12         | 0.093807    | 0.00006054  | 0.00012     | 0.00371     | 0.84092  | 0.95562  | 0.0285      | 0.0071     | 0.00025    | 0.00012    |
|                       |           |            |             |             |             |             |          |          |             |            |            |            |

 Table 2: Mode numbers, natural periods and mass participation (B block)

#### 9.6 DRIFT OF THE BUILDING

The deformation of the buildings is also determined and found that the drift limit is compliance with the provision of IS 1893:2016. The story drift of the building along x and y-direction is tabulated below.

|        | Т         | Table: Floor             | Displaceme | nt and Inter | storey Drif     | t              |         |
|--------|-----------|--------------------------|------------|--------------|-----------------|----------------|---------|
| Story  | Direction | Inter<br>Story<br>Height | Ux         | Uy           | Design<br>Drift | Drift<br>Ratio | Remarks |
|        |           | mm                       |            |              |                 | % <            | 0.40%   |
| Second | EQX       | 3600                     | 8.681      |              | 4.997           | 0.139          | OK      |
| First  | EQX       | 3600                     | 3.684      |              | 3.486           | 0.102          | OK      |
|        |           |                          |            |              |                 |                |         |
| Second | EQY       | 3600                     |            | 12.055       | 5.438           | 0.151          | OK      |
| First  | EQY       | 3600                     |            | 6.617        | 6.617           | 0184           | OK      |

Table 3: Floor displacement and inter storey drift (A block)

The maximum story drift is 0.103 % which is less than permissible value (0.4%) prescribed by the code.

#### Table 4: Floor displacement and inter storey drift (B block)

|        | Т         | Table: Floor             | Displaceme | nt and Inter | storey Drif     | t              |         |
|--------|-----------|--------------------------|------------|--------------|-----------------|----------------|---------|
| Story  | Direction | Inter<br>Story<br>Height | Ux         | Uy           | Design<br>Drift | Drift<br>Ratio | Remarks |
|        |           | mm                       |            |              |                 | % <            | 0.40%   |
| Second | EQX       | 3600                     | 7.6        |              | 5.76            | 0.16           | OK      |
| First  | EQX       | 3600                     | 1.84       |              | 1.84            | 0.051          | OK      |
|        |           |                          |            |              |                 |                |         |
| Second | EQY       | 3600                     |            | 9.55         | 6.32            | 0.176          | OK      |
| First  | EQY       | 3600                     |            | 3.23         | 3.23            | 0.09           | OK      |

#### 9.7 CHECK FOR TORSION

|       |               |       |                |                 | Table: C       | Check For Tors              | sion                    | -                           |           |
|-------|---------------|-------|----------------|-----------------|----------------|-----------------------------|-------------------------|-----------------------------|-----------|
| Story | Directio<br>n | -     | ement of<br>nm | Displace<br>B r | ement of<br>nm | Average<br>Displacem<br>ent | Maximum<br>Displacement | 1.2 Average<br>Displacement | Remarks   |
|       |               | Ux    | Uy             | Ux              | Uy             |                             |                         |                             |           |
| 1     | EQX           | 4.966 |                | 3.765           |                | 4.3655                      | 4.966                   | 5.2386                      | Regular   |
| 2     | EQX           | 2.873 |                | 1.751           |                | 2.312                       | 2.873                   | 2.7744                      | Irregular |
|       |               |       |                |                 |                |                             |                         |                             |           |
| 1     | EQY           |       | 2.634          |                 | 2.167          | 2.4005                      | 2.634                   | 2.8806                      | Regular   |
| 2     | EQY           |       | 6.572          |                 | 5.948          | 6.26                        | 6.572                   | 7.512                       | Regular   |

#### Table 5: Torsion check for building (A block)

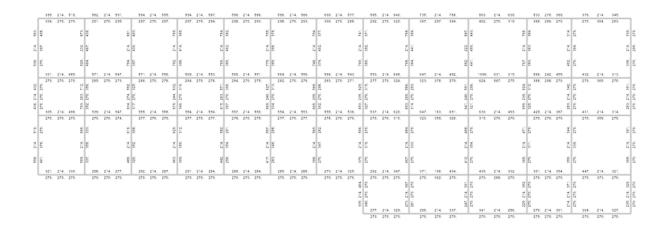
#### Table 6: Torsion check for building (B block)

|       | -             |       |                |                 | Table: C       | Check For Tors              | sion                    | -                           |         |
|-------|---------------|-------|----------------|-----------------|----------------|-----------------------------|-------------------------|-----------------------------|---------|
| Story | Directio<br>n | · ·   | ement of<br>nm | Displace<br>B n | ement of<br>nm | Average<br>Displacem<br>ent | Maximum<br>Displacement | 1.2 Average<br>Displacement | Remarks |
|       |               | Ux    | Uy             | Ux              | Uy             |                             |                         |                             |         |
| 1     | EQX           | 2.218 |                | 1.727           |                | 1.9725                      | 2.218                   | 2.367                       | Regular |
| 2     | EQX           | 5.111 |                | 4.536           |                | 4.8235                      | 5.111                   | 5.7882                      | Regular |
|       |               |       |                |                 |                |                             |                         |                             |         |
| 1     | EQY           |       | 2.434          |                 | 2.283          | 2.3585                      | 2.434                   | 2.8302                      | Regular |
| 2     | EQY           |       | 6.264          |                 | 5.483          | 5.8735                      | 6.264                   | 7.0482                      | Regular |

To check and balance torsion, Response Spectrum analysis has been carried out.

#### **10. DESIGN OF STRUCTURL MEMBERS**

#### 10.1 Design of slab


The slabs are kept in such a way that ly/lx is kept less than 2 such that it can be designed as two way slab. The slab is designed using SAP2000 V22 and checked manually on excel sheet based on IS 456:2000 and is presented in Annex.

#### 10.2 Design of Beam

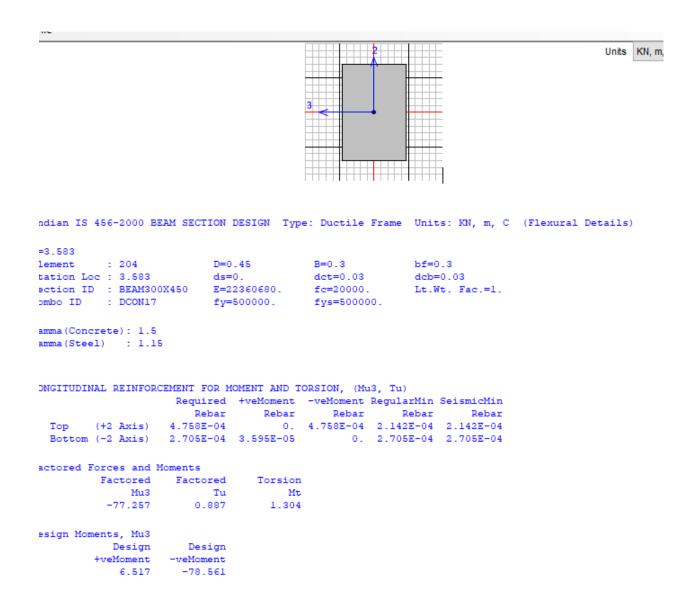
The beams are designed with the help of SAP2000 V22 and checked manually. The calculation of reinforcement on typical section of beam is obtained by SAP2000 V22 as shown below in Fig.

#### Figure 12: Sample Reinforcement at First floor beam (A block)

Please Refer Model Provided along with the Report for Detail The sample design of beam at first floor grid is presented below:



#### SAP2000 Concrete Frame Design


#### IS 456:2000 + IS 13920:2016 Beam Section Design

╪╪╪<mark>┊</mark>╞╞╌╡ Indian IS 456-2000 BEAM SECTION DESIGN Type: Ductile Frame Units: KN, m, C (Summary) L=3.584 Element : 483 D=0.45 B=0.3 bf=0.3 Station Loc : 0. ds=0. dct=0.03 dcb=0.03 E=22360680. Section ID : BEAM300X450 Combo ID : DCON8 fc=20000. fys=500000. Lt.Wt. Fac.=1. fy=500000. Gamma(Concrete): 1.5 Gamma(Steel) : 1.15 Factored Forces and Moments Factored Factored Factored Factored Mu3 Tu Vu2 Pu 81.263 -22.929 -89.676 4.193 Design Moments, Mu3 Positive Factored Torsion Negative Moment -95.842 Moment Mt Moment 6.166 -89.676 0. Longitudinal Reinforcement for Moment and Torsion (Mu3, Tu) Required +Moment -Moment Minimum Rebar Rebar Rebar Rebar Top (+2 Axis) 5.965E-04 Bottom (-2 Axis) 2.982E-04 0. 5.965E-04 2.142E-04 0. 0. 2.982E-04

Units KN, m, C

| _    |      |       | 901. |      |      |      |       |      | 470. | _    |      | 214 |     |      | _    | 822. | 214. | 848. | _    | _    | 843. | 214. | 817. | _    |      | 237 |      | _    | _    | 697. | 261. | 674. | _    |
|------|------|-------|------|------|------|------|-------|------|------|------|------|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|
|      | 01   | 11. 4 | 413. | 332. |      | -31  | 00. : | 270. | 312. |      | 324. | 270 | 288 |      |      | 270. | 270. | 273. |      |      | 272. | 270. | 274. |      | 313  | 270 | 315. |      |      | 255. | 451. | 488. |      |
| 348  | í.   |       |      |      | 412. | 276. |       |      |      | 497. | 270. |     |     | 510  | 236  |      |      |      | 12   | 294. |      |      |      | 522. | 387. |     |      | 197. | 366. |      |      |      | 108  |
| 100  | ú Al |       |      |      | 12   | 429. |       |      |      | 214  | 424  |     |     | 214  | 476  |      |      |      | 515  | 487. |      |      |      | 214. | 482. |     |      | 514  | 48   |      |      |      | 214. |
| 28.6 |      |       |      |      | 5    | 337. |       |      |      | 582. | 334. |     |     | 242  | 14   |      |      |      | 788. | 383. |      |      |      | 731. | 366. |     |      | 748  | 373. |      |      |      | 196  |
|      | 47   | 2. 3  | 214. | 484. |      | 4    | 48. 3 | 214. | 414. |      | 413. | 214 | 478 |      |      | 612. | 214. | 460. |      |      | 860. | 214. | 483. |      | 410  | 214 | 617. |      |      | 486. | 214. | 616. |      |
| Г    | 38   | 90. 3 | 320. | 270. | Т    | 23   | 70. 3 | 270. | 270. |      | 270. | 270 | 270 |      | Г    | 270. | 360. | 280. |      |      | 284. | 341. | 270. |      | 271  | 270 | 270. |      | Г    | 293. | 430. | 341. |      |
| 27.0 | í.   |       |      |      | ź    | 162  |       |      |      | 265  | 286  |     |     | 100  | 348  |      |      |      | 148  | 373. |      |      |      | 593  | 331. |     |      | 999  | 330. |      |      |      | 103  |
| 27.0 | 1    |       |      |      | 14   | 366. |       |      |      | 214. | 377. |     |     | 214  | 434  |      |      |      | 514  | 460  |      |      |      | 214. | 417. |     |      | 214  | 384  |      |      |      | 214. |
| 22.0 | 1    |       |      |      | ŝ    | 280  |       |      |      | 120  | 270. |     |     | 414  | 278. |      |      |      | 410  | 278. |      |      |      | 1961 | 270. |     |      | 113  | 386. |      |      |      | ź    |
|      | 24   | п. :  | 214. | 406. |      | 33   | 76.   | 214. | 343. |      | 427. | 214 | 242 |      |      | 425. | 214. | 430. |      |      | 416. | 214. | 461. |      | 384  | 214 | 444. |      |      | 630. | 214. | 450. |      |
| Г    | 27   | 3. 3  | 273. | 270. | 7    | 27   | 70.   | 270. | 270. |      | 270. | 270 | 270 |      | Г    | 270. | 270. | 270. |      |      | 270. | 270. | 270. |      | 271  | 270 | 270. |      |      | 270. | 415. | 290. |      |
| 22.0 | 1    |       |      |      | 2    | 192  |       |      |      | 194  | 270. |     |     | 300. | 278. |      |      |      | 377. | 270. |      |      |      | 201  | 276. |     |      | 623  | 811. |      |      |      | 107. |
| 27.0 | 1    |       |      |      | 514  | 364  |       |      |      | 214. | 278. |     |     | 214. | 278. |      |      |      | 214  | 278. |      |      |      | 214. | 278. |     |      | 214  | 381. |      |      |      | 214  |
| 27.0 | 1    |       |      |      | 10   | 236  |       |      |      | 414. | 276. |     |     | 2867 | 276. |      |      |      | 318  | 270. |      |      |      | 1993 | 286  |     |      | 673. | 337. |      |      |      | 198  |
|      | 24   | a. :  | 214. | 400. |      | 34   | 12.   | 214. | 313. |      | 318. | 214 | 296 |      |      | 281. | 214. | 322. |      |      | 429. | 214. | 472. |      | 348  | 214 | 451. |      |      | 433. | 214. | 441. |      |
| r    | 27   | 70. 3 | 270. | 270. | 1    |      |       |      | 270. |      |      | 270 |     |      | F    | 270. | 270. | 270. |      |      | 270. | 270. | 270. |      |      | 270 |      |      | F    | 270. | 428. | 288. |      |
| 27.0 | i la |       |      |      | 5    | 321  |       |      |      | 198  | 270. |     |     | 372. | 278. |      |      |      | 10   | 282  |      |      |      | 646. | 323. |     |      | 111  | 388  |      |      |      | 595  |
| 328  | Ú.   |       |      |      | 12   | 434  |       |      |      | 214  | 307. |     |     | 214. | 276. |      |      |      | 117  | 383. |      |      |      | 214. | 306. |     |      | 514  | 488. |      |      |      | 214  |
| N.   | í.   |       |      |      | 44   | 276. |       |      |      | 488. | 286. |     |     | 406. | 385  |      |      |      | 199  | 341. |      |      |      | 104  | 296. |     |      | 123  | 296. |      |      |      | ÷.   |
|      | 47   | 2. 2  | 224. | 400. |      | 32   | 70.   | 214. | 334. |      | 340. | 214 | 306 |      |      | 275. | 214. | 378. |      |      | 416. | 214. | 416. |      | 343  | 214 | 422. |      |      | 478. | 214. | 512. |      |
|      |      |       | 386. |      | -    |      |       |      | 270. |      |      | 270 |     | _    | -    | 270. | 270. | 270. | _    | -    | 270. | 270. | 270. | _    |      | 270 |      | _    | -    | 270. | 413. | 414. | _    |

#### Figure 13: Sample Reinforcement at First floor beam (B block)



#### **10.3 Design of Column**

The rectangular columns are designed with the help of SAP2000 V22 and checked manually. Calculation of longitudinal reinforcement of typical elements is shown below in Fig. below. The method carried out during the structural analysis is verified with other possible methods. There is not significant change in the design values. The interaction curve provided in literature is then used to design these columns.

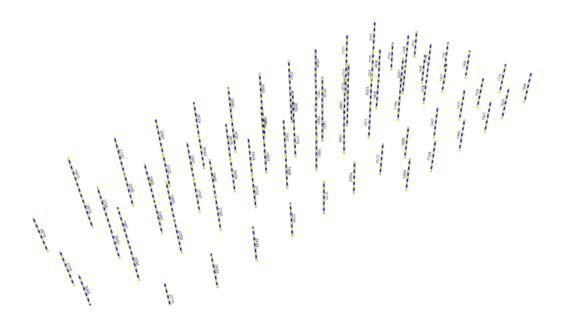
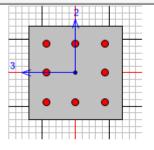
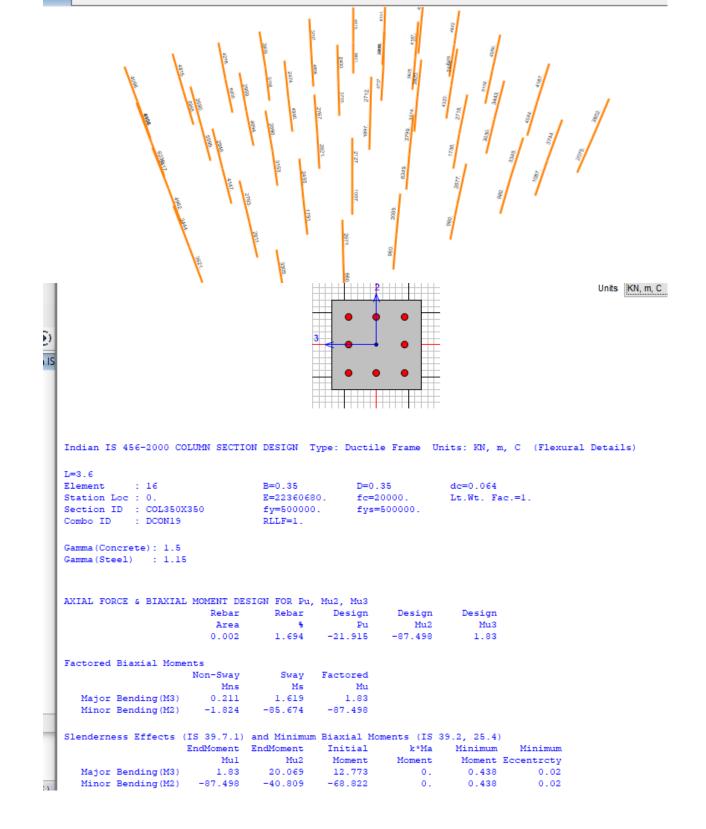




Figure 14 : Column Reinforcement in A block (Columns only shown for clarity)


Please Refer Model Provided along with the Report for Detail. Sample design of column of ground floor at grid A1 is shown below:

Units KN, m, C



Indian IS 456-2000 COLUMN SECTION DESIGN Type: Ductile Frame Units: KN, m, C (Flexural Details) L=3.6 Element : 305 B=0.35 D=0.35 dc=0.064 Station Loc : 0. E=22360680. Lt.Wt. Fac.=1. fc=20000 Section ID : COL350X350 fy=500000. fys=500000. Combo ID : DCON20 RLLF=1. Gamma(Concrete): 1.5 Gamma(Steel) : 1.15 AXIAL FORCE & BIAXIAL MOMENT DESIGN FOR Pu, Mu2, Mu3 Design Rebar Rebar Design Design Area - 8  $\mathbf{Pu}$ Mu2 Mu3 0.002 1.926 131.986 107.138 -8.034 Factored Biaxial Moments Non-Sway Sway Factored Mns Ms Mu -7.441 -8.034 Major Bending(M3) -0.593 107.138 103.818 Minor Bending(M2) 3.32 Slenderness Effects (IS 39.7.1) and Minimum Biaxial Moments (IS 39.2, 25.4) EndMoment EndMoment Initial k\*Ma Minimum Minimum Mul Mu2 Moment Moment Moment Eccentrcty Major Bending(M3) -8.034 -5.932 -7.193 0. 2.64 0.02 Minor Bending(M2) 107.138 85.751 98.583 2.64 0.02 Ο.

Figure 15: Column Reinforcement in B block (Columns only shown for clarity)



#### **10.4 Design of foundation**

The foundations used in the building are of isolated type as per the requirements. The depth of the footing is governed by one way and two way shear (punching shear). The soil type is assumed to be of medium type. So the allowable bearing capacity of soil is taken from the soil test report. Bearing capacity of the isolated footing is at the depth of 2 m.

#### Allowable bearing capacity = 225 KN/m2

The design of isolated footing has been carried out manually as per IS 456 2000 and is presented in Annex.

#### 10.5 Design of staircase

The staircase used in the building is of Straight flight and dog legged type. The design of staircase is done manually using IS 456 2000 as presented in Annex.

#### **11. CONCLUDING REMARKS**

Reinforced concrete construction is common all over the world. It is used extensively for construction of variety of structures such as buildings, bridges, dams, water tanks, stadium, towers, chimneys, tunnels and so on.

Experiences from past earthquakes and extensive laboratory works have shown that a well-designed and detailed reinforced concrete structure is suitable for earthquake resistant structure. Ductility and strength required to resist major earthquake can be achieved by following the recommendations made in the standard codes of practice for earthquake resistant design.

Detailing of steel reinforcement is an important aspect of structural design. Poor reinforcement detailing can lead to structural failures. Detailing plays an important role in seismic resistant design. In seismic resistant design, actual forces experienced by the structure are reduced and reliance is placed on the ductility of the structure. And, ductility can be achieved by proper detailing only. Thus, in addition to design, attention should be paid on amount, location and arrangement of reinforcement to achieve ductility as well as strength.

Design and construction of the structure are inter – related jobs. A building behaves in a manner how it has been built rather than what the intensions is during designing. A large percentage of structural failures are attributed due to poor quality of construction. Therefore, quality assurance is needed in both design and construction.

In earthquake resistant construction quality of materials and workmanship plays a very important role. It has been observed that damages during earthquakes are largely dependent on the quality and workmanship. Hence, quality assurance is the most important factor in the good seismic behavior of the structure.

The strap beam has to be constructed at block B below shear wall must be associated with monolithic and ductile performances with SMRF type.

The straight flight of staircase may belinked up to the columns by inclined beam strut

## **12. REFERENCE CODE**

| NBC 110: 1994 | Plain and Reinforced Concrete                        |
|---------------|------------------------------------------------------|
| NBC 102: 1994 | Unit Weights of Materials                            |
| NBC 103: 1994 | Occupancy Load (Imposed Load)                        |
| NBC 104: 1994 | Wind Load                                            |
| NBC105: 1994  | Seismic Design of Buildings in Nepal                 |
| NS: 501-2058  | Code of Practice for Ductile Detailing of Reinforced |
|               | Concrete Structures Subjected to Seismic Forces      |
| SP: 16-1980   | Design Aids for Reinforced Concrete to IS: 456-1978  |
| SP: 34-1987   | Handbook on Concrete Reinforcement Detailing         |
| IS: 456-2000  | Plain and reinforced concrete code                   |
| IS: 1893-2002 | Earthquake resistant design of structure             |
| IS: 13920     | Ductility code                                       |

# ANNEX

## **Annex 1: Column Detailing**

| Grade of concrete : | M30                   |                         | Grade of steel : Fe5    | 00                     |
|---------------------|-----------------------|-------------------------|-------------------------|------------------------|
| Column ID           | Size (mm)<br>(Square) | Lower Ground Floor      | Ground floor            | First Floor            |
| Block A and B       | 350                   | 8-25 Φ                  | $4-25 \Phi + 4-20 \Phi$ | $4-25 \Phi + 4-20\Phi$ |
| Ramp Columns        | 400                   | $4-25 \Phi + 8-20 \Phi$ |                         |                        |

Provide 2-legged Lateral ties 10mm  $\Phi$  @ 100 mm c/c at h/4 from beam connection and 10mm  $\Phi$  @ 150 mm c/c at center.

Also Provide Lateral ties 10mm  $\Phi$  @ 100 mm c/c at lap.

## Annex 3 Beam Detailing

| Grade of concrete : M20 | Grade of steel : Fe500 |
|-------------------------|------------------------|

| anid lina  | Left                       |        |           | Mid      | Right                      | Right  |  |
|------------|----------------------------|--------|-----------|----------|----------------------------|--------|--|
| grid line  | Тор                        | Bottom | Тор       | Bottom   | Тор                        | Bottom |  |
| X-beam     |                            |        |           |          |                            |        |  |
| As per fig | $4-20(Th) + 3- 20\Phi(Ex)$ | 6-20Φ  | 4-20Φ(Th) | 6-20(Th) | $4-20(Th) + 3- 20\Phi(Ex)$ | 6-20Φ  |  |
| As per fig | $4-20(Th) + 2-20\Phi(Ex)$  | 5-20Φ  | 4-20Φ(Th) | 5-20(Th) | $4-20(Th) + 2-20\Phi(Ex)$  | 5-20Φ  |  |
| Y-beam     |                            |        |           |          |                            |        |  |
| As per fig | $4-20(Th) + 3-20\Phi(Ex)$  | 6-20Φ  | 4-20Φ(Th) | 6-20(Th) | $4-20(Th) + 3- 20\Phi(Ex)$ | 6-20Φ  |  |
| As per fig | $4-20(Th) + 2-20\Phi(Ex)$  | 5-20Φ  | 4-20Φ(Th) | 5-20(Th) | $4-20(Th) + 2-20\Phi(Ex)$  | 5-20Φ  |  |

| • 1 1•     | T C                       |              |           | <b>.</b> | Dili                      |        |  |
|------------|---------------------------|--------------|-----------|----------|---------------------------|--------|--|
| grid line  | Left                      |              |           | Mid      |                           | Right  |  |
|            | Тор                       | Bottom       | Тор       | Bottom   | Тор                       | Bottom |  |
| X-beam     |                           |              |           |          |                           |        |  |
| As per fig | 4-20(Th) + 2-<br>20Φ(Ex)  | <b>5-20Φ</b> | 4-20Ф(Th) | 5-20(Th) | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20Φ  |  |
| As per fig | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20Φ        | 4-20Φ(Th) | 5-20(Th) | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20Φ  |  |
| Y-beam     |                           |              |           |          |                           |        |  |
| As per fig | $4-20(Th) + 3-20\Phi(Ex)$ | 6-20Φ        | 4-20Φ(Th) | 6-20(Th) | $4-20(Th) + 3-20\Phi(Ex)$ | 6-20Ф  |  |
| As per fig | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20Φ        | 4-20Φ(Th) | 5-20(Th) | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20Φ  |  |

| Fir | rst floor beam (450 x 300) |
|-----|----------------------------|
|-----|----------------------------|

| grid line | Left                      |               |           | Mid      | Right                     |               |
|-----------|---------------------------|---------------|-----------|----------|---------------------------|---------------|
|           | Тор                       | Bottom        | Тор       | Bottom   | Тор                       | Bottom        |
| All Beams | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20 <b>Φ</b> | 4-20Φ(Th) | 5-20(Th) | $4-20(Th) + 2-20\Phi(Ex)$ | 5-20 <b>Φ</b> |

Provide 2-legged vertical stirrup 10mm  $\Phi$  100 mm c/c at 2D- from support and 10mm  $\Phi$  @ 150 mm c/c at center.

Also provide 2-legged vertical stirrup 10mm  $\Phi$  @ 100 mm c/c at lap

## **Annex 4: Design of Foundation**

The foundation is of isolated and combined type. The footing has been designed manually as per IS 456 2000. Sample design calculation for footing type F1 is shown below:

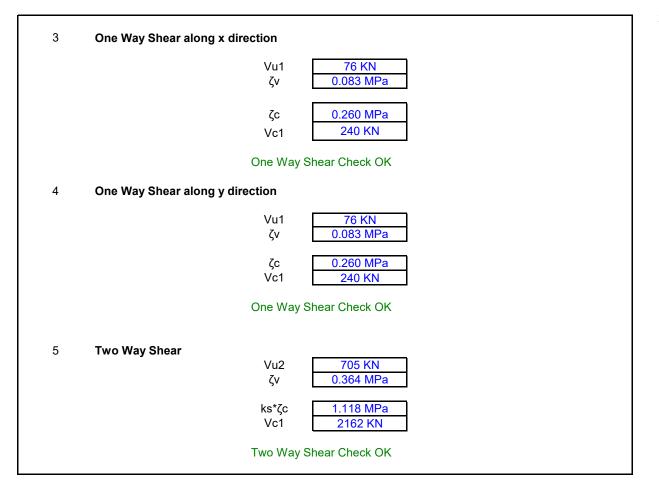
see Pdf attached

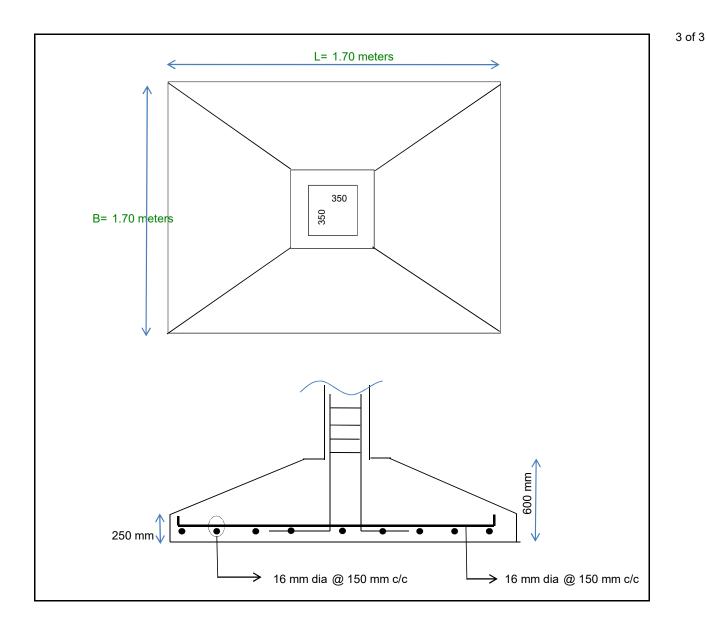
Similarly calculations were done for other footing types and shown in drawing.

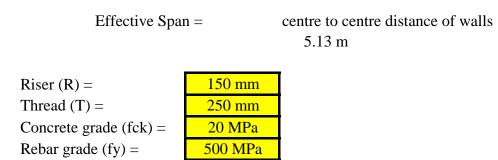
Annex 5: Design of Slab See Pdf attached

## **Annex 6: Design of Staircase**

See Pdf attached


## Annex 7: Design of Shear wall with strap beam


See Pdf attached


| Load<br>Design Load                    | Pu<br>P          | 872 KN<br>639 KN                                        |
|----------------------------------------|------------------|---------------------------------------------------------|
| Moment in x dir<br>Moment in y dir     | Mux<br>Muy       | 1 KN-m<br>3 KN-m                                        |
| Column size                            | cx<br>cy         | 350 mm<br>350 mm                                        |
| SBC                                    | q                | 225 KN/sqm                                              |
| Footing Size required                  | A req            | 2.84 sqmm                                               |
| Footing Size Provided<br>Area Provided | L<br>B<br>A prvd | 1.70 meters           1.70 meters           2.89 meters |
|                                        | Zx<br>Zx         | 0.82<br>0.82                                            |
| Net upward pressure                    | Nup              | 224 KNm2                                                |
|                                        | Foot             | ing Size OK                                             |

| Slab Design               |               |                  |           |  |
|---------------------------|---------------|------------------|-----------|--|
|                           | Ix            | 0.675            |           |  |
|                           | ly            | 0.675            |           |  |
| Bending Moment in x dir   | Mx            | 77 KN-m          |           |  |
| Bending Moment in y dir   | My            | 77 KN-m          |           |  |
| Concrete                  | fck           | 20 MPa           |           |  |
| Steel                     | fy            | 500 MPa          |           |  |
| Minimum Depth Required    | dmin          | 170              |           |  |
| Depth Provided            | D             | 600 mm           |           |  |
| Clear Cover               | с             | 50 mm            |           |  |
| Effective Cover           | d'            | 58 mm            |           |  |
| Effective Depth           | d'            | 542 mm           |           |  |
|                           | S             | pacing c/c in mm |           |  |
| Area of Steel             | 12#           | 16#              | 20#       |  |
| 650 sqmm                  | 174 c/c       | 309 c/c          | 483 c/c   |  |
| 650 sqmm                  | 174 c/c       | 309 c/c          | 483 c/c   |  |
| Minimum Ast required acro | ss x direcion |                  |           |  |
| Minimum Ast required acro | ss y direcion |                  |           |  |
| Ast across x direction    | 16 mm dia     | @ 150 mm c/c     | 1340 sqmm |  |
| Ast across y direction    | 16 mm dia     | @ 150 mm c/c     | 1340 sqmm |  |

1 of 3







Assume,

Thickness of waist slab (t) = Overall thickness (D) =

| 17 | 70 mm  |
|----|--------|
|    | 200 mm |

#### Let us find load per metre horizontal width of stairs

Weight of waist salb =  $D*sqrt*(1+(R/T)^2)*25)$ = 5.83 KN/m

Weight of steps =1/2\*R\*25

| = | 1.88 KN/m    |
|---|--------------|
| _ | 1.00 KIN/III |

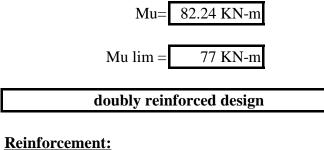
Therefore Dead Load = Finishing Load =

| 7.71 KN/m |  |
|-----------|--|
| 1.50 KN/m |  |

#### In going portion total DL with finishing,

Total Dead load =




#### In Landing portion

| Dead Load =      | 4.25 KN/m |
|------------------|-----------|
| Finishing Load = | 1.50 KN/m |



$$R_{A} = R_{B} = 48.36 \text{ KN}$$

Maximum Moment occurs at mid span and its value is,



Mu= 0.87\*fy\*Ast\*d\*(1-Ast/bd\*fy/fck) Therfore Ast = 1400 sqmm

| Use bars of diameter =<br>Spacing requied =<br>Provide spacing = | 16 mm<br>144 mm<br>130 mm | Spacing ok |
|------------------------------------------------------------------|---------------------------|------------|
| <b>Distribution Steel</b>                                        |                           |            |
| Ast = 0.12 percent                                               | of gross section          | nal area   |
| Therefore ,Ast =                                                 | 240 sqmm                  |            |
|                                                                  |                           |            |
| Use bars of diameter =                                           | 10 mm                     |            |
| Spacing requied =                                                | 327 mm                    | Spacing ok |
| Provide spacing =                                                | 150 mm                    |            |

## Staircase Design long staircase

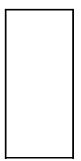
|                           | Total Load | 13.47 KN/m |   | Factored Load               | 14.36 KN/m |
|---------------------------|------------|------------|---|-----------------------------|------------|
| Floor Finish Load         |            | 1.00 KN/m  |   | Total Load                  | 9.58 KN/m  |
| Live Load                 |            | 5.00 KN/m  |   | Floor Finish Load           | 1.20 KN/m  |
| Self weight of steps      |            | 1.88 KN/m  |   | Live Load                   | 4.00 KN/m  |
| Self weight of waist slab |            | 5.59 KN/m  |   | Self weight of landing slat | 4.38 KN/m  |
| Loads on going            |            |            | - | Loads on waist slab         |            |
| Loading                   |            |            |   |                             |            |
| Grade of Steel (fy)       | L          | 500 MPa    |   |                             |            |
| Grade of Concrete (fck)   | Ę          | 20 MPa     | ] |                             |            |
| Thickness of slab (t)     | L          | 175 mm     | J |                             |            |
| Effective Cover           | _          | 25 mm      |   |                             |            |
| Overall Depth (D)         | _          | 200 mm     |   |                             |            |
| Thread (T)                | _          | 300 mm     |   |                             |            |
| Riser (R)                 | _          | 150 mm     |   |                             |            |
| Effective Span (l)        | _          | 6.50 m     |   |                             |            |
| Data                      | _          |            | - |                             |            |

Factored Load 20.20 KN/m

## **Bending Moment**

Calculate Bending Moment using the equation (W\*L\*L )/8

Bending Moment = 107 KN-m


| <b>Reaction</b><br>to be used as UDL = 66 KN                             |                                                     |                 |         |  |
|--------------------------------------------------------------------------|-----------------------------------------------------|-----------------|---------|--|
| Singly/Doubly Reinforced C $M_{u,lim} = 0.36 f_{ck} b x_{u,lim}(d-0.42)$ |                                                     |                 |         |  |
| For Fe 500, $x_{u,lim} = 0.46d$                                          |                                                     |                 |         |  |
| Hence, Mu.lim = $0.1336f_{ck}$                                           | *b*d <sup>2</sup> 82                                | 2 KN-m          |         |  |
| The section is doubly reinfo                                             | rced. Please recheck.                               |                 |         |  |
| Area of Main Steel                                                       | Ast required                                        | 1939 sqmm       |         |  |
| Spacing                                                                  |                                                     | 16              |         |  |
|                                                                          | Diameter of bar in mm (ø)<br>Spacing required in mm | 16<br>104 c/c   |         |  |
|                                                                          | Spacing provided in mm                              | 100 c/c         |         |  |
|                                                                          | Provded Main Steel: 1                               | 6 mm ø bars @   | 100 c/c |  |
| Area of Distribution Steel                                               | Ast required                                        | <b>300 sqmm</b> |         |  |

| Design of Typical Slab of block A and Block B Sindhuli 10 beded hospital |                        |                                                                                                                                                              |   |    |  |  |  |
|--------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|--|--|--|
| Design of Slab as pe<br>Input Data:<br>Material :                        |                        | <u>00:</u>                                                                                                                                                   | 1 | 2  |  |  |  |
| Concrete Grade M<br>Reinforcement Steel G                                |                        | 500                                                                                                                                                          |   |    |  |  |  |
| Dimensions:<br>Short Span : Lx:<br>Long Span : Ly:                       | 4.5<br>5.23            | m<br>m                                                                                                                                                       | 3 |    |  |  |  |
| Effective Cover:                                                         | 20                     | mm (Cover should comply clause 26.4                                                                                                                          |   | 11 |  |  |  |
| Boundary Condition:                                                      | 3                      | of IS:456) <ul> <li>* For Two way slab,refer the sketch on the right side.Dark line shows the continuity.</li> <li>* For one way continuous slab,</li> </ul> | 5 | 6  |  |  |  |
|                                                                          |                        | <ul> <li>5 for Intermediate Panel,7 for end Panel,</li> <li>* For one way discontinuous slab, 9.</li> <li>* For cantilever slab, 10.</li> </ul>              | 7 | 8  |  |  |  |
| Load :                                                                   | 0.5                    | kN/m <sup>2</sup>                                                                                                                                            |   |    |  |  |  |
| Floor Finish Load w <sub>f</sub> :<br>Live Load w <sub>L</sub> :         | 2.5<br>3.5             | kN/m <sup>2</sup>                                                                                                                                            |   |    |  |  |  |
| Load Factor for BM:<br>Load Factor for SF:                               | 1.5<br>1.5             |                                                                                                                                                              | 9 |    |  |  |  |
| Calculations:<br>Aspect ratio=Ly/Lx=<br>Slab designed as:                | 1.162222<br>Two Way \$ |                                                                                                                                                              |   |    |  |  |  |
| Bending Moment Coef                                                      | ficients:              |                                                                                                                                                              |   |    |  |  |  |
| $\alpha_{x \text{ support}} =$                                           |                        | 0 For short span support moment.                                                                                                                             |   |    |  |  |  |
| α <sub>x span</sub> =                                                    | 0.036                  | 7 For short span span moment.                                                                                                                                |   |    |  |  |  |
| $\alpha_{y \text{ support}} =$                                           | 0.03                   | 7 For Long span support moment.                                                                                                                              |   |    |  |  |  |

| α <sub>y span</sub> =                                    | 0.028        | For Long s         | pan span mo               | oment.                   |                     |                                      |  |
|----------------------------------------------------------|--------------|--------------------|---------------------------|--------------------------|---------------------|--------------------------------------|--|
| Depth assumed D =<br>Selfweight w <sub>self</sub> =25xD/ |              | <b>150</b><br>3.75 | mm<br>kN/m²               |                          | concrete as         | ssumed 25 kN/m <sup>3</sup> )        |  |
| Load intensity = w = w <sub>s</sub>                      |              |                    |                           | 5 kN/m <sup>2</sup>      |                     |                                      |  |
| Effective depth d= D -                                   |              |                    |                           | ) mm                     |                     |                                      |  |
| Factored Bending Mon                                     | nents=Factor | x w x Coef         | ficient x Lx <sup>2</sup> |                          |                     |                                      |  |
|                                                          |              |                    | Mu/bd <sup>2</sup>        | p <sub>t req</sub>       | Ast req             |                                      |  |
|                                                          |              |                    |                           | %                        | mm <sup>2</sup> / m | Explanation:                         |  |
| Mux support=                                             | 14.505       | kN m               | 0.858                     | 0.208                    |                     | $Mu/bd^2 = Mux10^6/(1000xd^2)$       |  |
| Mux span=                                                | 10.879       |                    | 0.644                     | 0.154                    |                     | $p_{t red}$ is from charts of SP-16. |  |
| Muy support=                                             | 10.958       | kN m               | 0.648                     | 0.155                    |                     | Ast= p <sub>t</sub> x1000xd/100      |  |
| Muy span=                                                | 8.292        | kN m               | 0.491                     | 0.116                    | 151.10              |                                      |  |
|                                                          |              |                    |                           | 0                        |                     |                                      |  |
| Minimum Ast req=0.12                                     | xD/1000=     |                    | 180                       | ) mm <sup>2</sup> per me | eter                |                                      |  |
| Reinforcement Provide                                    | ed:          |                    |                           |                          |                     |                                      |  |
| Short Span Support:                                      | 10           | Dia at             | 150                       | c/c                      | Ast=                | 523.3 <b>OK</b>                      |  |
| Short Span Span:                                         |              | Dia at             | 150                       | c/c                      | Ast=                | 523.3 <b>OK</b>                      |  |
| Long Span Support:                                       |              | Dia at             | 150                       | c/c                      | Ast=                | 523.3 <b>OK</b>                      |  |
| Long Span Span:                                          | 10           | Dia at             | 150                       | c/c                      | Ast=                | 523.3 <b>OK</b>                      |  |
| Check for Deflection:                                    |              |                    |                           |                          |                     |                                      |  |
| Basic L/d =                                              | 26           | (Clause 23         | .2.1 of IS 45             | 6-2000)                  |                     |                                      |  |
| Modification factor=                                     |              | · •                | of IS 456-200             | ,                        |                     |                                      |  |
| d req as per deflection                                  | ```          |                    |                           | ,                        | 86.54               | mm                                   |  |
| d required                                               | <            | d provided         | SO,                       | ΟΚ                       |                     |                                      |  |
| Check for Shear:                                         |              |                    |                           |                          |                     |                                      |  |
| Shear Force Vu=                                          | Factor x w x | Lx/2=              | 32.90625                  | 5 kN                     |                     |                                      |  |
| Nominal Shear Stress=                                    |              | 0.253              | N/mm <sup>2</sup>         |                          |                     |                                      |  |
| %reinforcement=                                          |              | %                  |                           |                          |                     |                                      |  |
| Beta=                                                    | 5.768        |                    |                           |                          |                     |                                      |  |
| $\tau_c =$                                               | 0.438        | N/mm <sup>2</sup>  |                           |                          |                     |                                      |  |

| k=<br>kxτ <sub>c</sub> = | 1.3   | As per Clause 40.<br>N/mm <sup>2</sup> | 2.1.1 | IS:456:2000 |
|--------------------------|-------|----------------------------------------|-------|-------------|
| kxτ <sub>c</sub> =       | 0.570 | N/mm <sup>2</sup>                      | SO.   | ОК          |
| č                        |       |                                        | ,     |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |
|                          |       |                                        |       |             |

Page 6

